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Abstract

Aims: To quantify the treatment effects of cellular, acellular and matrix-like products (CAMPSs) on diabetic foot ulcer (DFU)
healing, based on the 35 randomized controlled trials (RCTs) cited in Medicare’s 2024 Local Coverage Determinations
(LCDs).

Methods: We extracted healing outcome data from all 35 RCTs and applied a Bayesian hierarchical beta-binomial model
to estimate product-specific and pooled healing probabilities, and risk ratios. We used posterior prediction to account for
heterogeneity and to impute missing standard of care (SOC) comparators. Predicted outcomes were standardized to a 12-
week follow-up and a hypothetical trial size of 100 participants (50 per arm), ensuring comparability across heterogeneous
study designs.

Results: All CAMPs showed improved healing relative to SOC. The pooled posterior mean risk ratio was 2.0 (95% credible
interval (Crl)): 1.69-2.38), indicating a doubling of healing likelihood. Product-specific risk ratios ranged from 1.74 to 2.30,
with minimal posterior probability near the null, supporting consistent treatment benefit across products.

Conclusions: CAMPs consistently show superior healing outcomes compared to SOC in promoting DFU healing. This
quantitative synthesis clarifies the evidence underpinning Medicare’s coverage decisions and provides a statistical
benchmark for clinicians, sponsors, and payers in evaluating CAMPs-based therapies.

Introduction
Diabetic foot ulcers (DFUs) are a common and serious complication of diabetes, affecting up to one in four people with
the disease during their lifetime. They are associated with prolonged morbidity, high rates of infection and amputation,
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and substantial health care costs. Standard of care (SOC) typically includes debridement, infection control, pressure
offloading, and regular wound dressings, but many DFUs fail to heal under these measures alone. Cellular and/or
tissue-based products (CAMPs) have emerged as adjunctive therapies designed to promote healing by providing
structural scaffolds, growth factors, and regenerative cellular components. Although widely adopted in clinical
practice, CAMPs are costly, and their coverage has become a focal point of payer policy.

In May 2023, all seven Medicare Administrative Contractors (MACSs) jointly released proposed Local Coverage
Determinations (LCDs)' that substantially limited coverage for CAMPs used in the treatment of DFUs. Although issued
under separate MAC jurisdictions, the LCDs were co-ordinated in scope, design, and evidentiary foundation. Each
relied on a harmonized application of the Grading of Recommendations Assessment, Development and Evaluation
(GRADE)? framework to assess the strength of clinical evidence. After reviewing public comments, the MACs finalized
the LCDs on January 4, 2024,%# establishing a unified national policy that restricted reimbursement to 17 specific
CAMPs products based on 35 cited randomized controlled trials (RCTs).

While the LCDs provided a structured appraisal of evidence strength, the GRADE framework does not quantify effect
sizes or account for statistical heterogeneity across trials. In particular, it leaves unanswered questions about the
magnitude and consistency of CAMPs' clinical benefit. The primary endpoint across all LCD-cited studies was
complete wound closure, a clinically meaningful outcome that reflects full re-epithelialization, reduced infection risk,
and lower likelihood of amputation. The LCDs synthesized this evidence using the GRADE framework to evaluate risk of
bias, consistency, precision, and overall strength of recommendation. Yet differences in trial design, SOC definitions,
and product characteristics complicate direct comparisons and reduce interpretability.

A rigorous quantitative synthesis is therefore needed to complement the GRADE assessments. Conventional
fixed-effects or frequentist meta-analyses are ill-suited to this evidence base given its heterogeneity and missing
comparators. By contrast, a Bayesian hierarchical beta-binomial model allows for partial pooling across studies,
accommodates overdispersion in healing outcomes, and can generate probabilistic predictions for trials lacking SOC
arms.’ This approach to the meta-analysis of binary outcomes was discussed at length by Zhang,® and performed
inter alia by Spiegelhalter.” This approach provides both product-specific and pooled effect estimates while directly
quantifying uncertainty.

In this study, we conducted a Bayesian meta-analysis of the 35 RCTs cited in the 2024 Medicare LCDs. Our

objective was not to re-evaluate the full CAMPs literature, but to quantify the evidence already deemed sufficient for
policymaking. By doing so, we provide a transparent statistical interpretation of the LCDs and establish benchmarks for
clinicians, sponsors and payers in evaluating CAMPs-based therapies.

Methods

Study identification

We identified studies based on the list of RCTs (depicted in Figure 7) published by all seven MACs. These LCDs listed
35 RCTs supporting coverage for 17 specific CAMPs products. Each LCD referenced the same harmonized set of
studies, derived from a co-ordinated GRADE assessment process.

No additional database search (e.g., MEDLINE, Embase) was performed beyond this pre-specified source. This
decision reflects our objective: to formally quantify the evidence base used by the MACs in determining coverage. To
ensure accuracy and completeness, we extracted publication identifiers (PMIDs, DOIs), journal names, study arms,
and outcome data directly from the LCDs and cross-referenced them with the original publications accessed via
PubMed and publisher websites.

This focused search strategy supports the analytic goal of replicating the evidentiary foundation already judged sufficient
for Medicare coverage, rather than re-assessing the broader body of CAMPs literature. By restricting inclusion to LCD-
cited trials, we avoided selection bias and maintained alignment with the policy-relevant evidence base.

Classification of trials, outcomes, and definitions

As shown in Figure 2, trials were classified based on design characteristics reported in the LCD source document,
original trial publications, and supplementary materials when available. Most studies were two-arm RCTs comparing
CAMPs to SOC over a 12-week follow-up. The sample also included single-arm CAMPs studies, three-arm trials, and
trials with longer durations (e.g., 16 or 20 weeks).

The primary outcome across all studies was complete wound closure, typically defined as 100% re-epithelialization
with no drainage at the index wound site. While wound assessment protocols varied, the healing definition was
standardized and consistently extracted from the LCDs. When multiple endpoints or time points were reported, we
selected the final follow-up window listed in the LCDs.
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s0C Treatment

Duration

Year Region (weeks) M Healed Total Healed Total
Affinity
Serena (2020) 2020  USA 16 76 ik 38 22 18
AmnioBand or AmnioGuardian
DiDomenico (2016) 2016 USA 1240 5 20 17 20
DiDomenico (2018) 2018 USA 12 80 13 40 34 40
Glat (2019) 2019 USA 12 30 - - 2730
Apligraf
Veves (2001) 2001 USA 12 208 36 98 63 112
Edmonds (2009) 2008  USA 12: N 10 3B 17 33
Steinberg (2010) 2070 USA 12 1 278 46 134 80 145
Zelen (2015) 2015 < USA 6 40 rJ 20 9 20
DermACELL AWM
Walters (2017) 2017 USA 16 109 28 56 36 53
Derma-Gide
Armstrong (2022) 2022 USA 12 40 6 20 17 20
Armstrong (2024) 2024  USA 12 1085 23 81 45 54
Dermagraft
Gentzkow (1996) 1996  USA 12§ 25 1 13 & 12
Marston (2003) 2003  USA 12 245 21 115 39 130
Sanders (2014) 2014 USA 200N - 4 1
Epicord
Tettelbach (2019) 2079  USA 12 101 - - 71101
Epifix
Zelen (2013) 2013 - USA B 25 1 12 12 13
Zelen (2015) 2015 < USA 6 40 7 20 19 20
Zelen (2016) 2016 < USA 12 67 18 35 n iz
Tettelbach (2019) | 2079  USA 12 110 28 56 38 54
FlexHD or AllopathHD
Zelen (2018) 2018 - USA 12 80 12 40 kL) 40
Grafix Stravix Prime PL
Lavery (2014) 2074 - UsA 12 97 10 a7 31 50
Graftjacket
Brigido (2004) 2004  USA 12 80 14 40 27 40
Brigido (2006) 2008 < USA 16 28 4 14 12 14
Reyzelman (2009) @ 2008  USA 12: 85 18 39 32 46
Walters (2017) 2017 USA 16 79 26 56 1 23
Kerecis Omega3 or Marigen Shield
Kirsner (2020) 2020 - USA 4 85 = - = B85
Lullove (2021) 2021  USA 12 49 a8 25 16 24
Lantis (2023) 2023 - USA 12 102 16 51 29 51
Dardari (2024) 2024  France 16 255 3 126 57 129
NuShield
Cazzell (2024) 2024 USA 12: 218 8 109 55 108
Oasis Wound Matrix
Niezgoda (2005) 2005 USA 12 37 - - 18 7
Landsman (2008) 2008 USA 12: 13 - - 10 13
Omniegraft Dermal Regeneration Matrix
Driver (2015) 2015 USA 16 307 48 153 79 154
Primatrix
Lantis (2021) 2021  USA 12 161 29 B2 47 79
Theraskin
Sanders (2014) 2014 < USA 20 12 — - 7oz
Armstrong (2022) 2022 USA 12 100 18 50 38 50

FIGURE 1 | List of 35 RCTs supporting coverage for 17 specific
CAMPs products published by all seven MACs.

Each study arm was classified by treatment type (CAMPs or SOC) and by product. Outcomes were recorded as the
number of healed wounds out of the number treated. This enabled arm-level modeling and partial pooling across
studies while accounting for variability in product, comparator, and trial design.
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35 RCTs cited in
LCD Table 1:
Evidence for Covered
Products for DFU

l

35 full-text articles
assessed for eligibility

l

35 RCTs included in meta-
analysis

l

All RCTs contributed
CAMPS arm healing data

Was SOC arm present?

No (n = 6): SOC arm
simulated via Bayesian
model

Yes (n = 29): SOC arm used
as reported

FIGURE 2 | Trials were classified based on design characteristics reported in the LCD source
document, original trial publications, and supplementary materials when available.

This classification ensured fidelity to the policy-relevant evidence base and supported hierarchical modeling of
binomial outcomes across a diverse set of trial designs.

Statistical methods

Model structure

The authors modeled wound healing outcomes using a Bayesian hierarchical beta-binomial regression. The unit of
analysis was the study arm, with each arm contributing the number of wounds healed out of the total treated. To
account for greater-than-binomial variation (i.e., heterogeneity across patients, protocols, or measurements), a beta-
binomial likelihood was used.

healed; ~ Beta-Binomial(n;, p;, ;) [Healed wounds out of n; treated|
logit(p;) = a + 3 - week; + Garmli) T Cproduct|i] T @product:armi] [Healing log-odds with time, arm, and product effects]

log(n,-) = Y + Yproduct:arm|i] :Prccisiun (inverse overdispersion) varies by product and arm]
In this model, |_i represents the average healing probability in arm (i), and k_i captures how tightly individual outcomes
cluster around the average. A higher k implies more consistency; a lower k allows for greater within-arm variation.

Healing probability was modeled on the logit scale. The model included an overall intercept (a) representing baseline
healing across arms, a fixed effect of follow-up time in weeks (B-week), and random effects to account for differences
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by treatment arm (CAMPs versus SOC), by product, and by product-treatment combinations.

This structure accounts for differences in product performance and allows these effects to vary between CAMPs and
SOC arms. The use of random effects enables uncertainty in product-specific performance while leveraging shared
information across studies (‘partial pooling’).

We also allowed variability () within each arm to differ by product and treatment type, reflecting the fact that some
studies reported more consistent healing outcomes than others. This ensures that results from arms with wide
variability are appropriately down weighted in the final estimates.

By using a hierarchical model, we accommodate between-trial variation, estimate plausible outcomes for missing
comparators, such as SOC arms in single-arm trials, and strengthen inference by borrowing information across related
study conditions.

Estimand and effect measures

The estimand was defined in log-odds space and transformed to healing probability using the expit (inverse logit)
function. Risk ratios were calculated by dividing the predicted probability of complete wound closure in the CAMPs arm
by the predicted probability in the SOC arm.

Priors

In Bayesian analysis, priors reflect initial assumptions about model parameters.’? They help stabilize estimates when
data are sparse or heterogenous. We used weakly informative priors to define plausible ranges for healing rates and
between-study variation, without overpowering the observed data.

a ~ Normal(0,11.15) rBa.seline healing log-oddsl
~ INorma. . [Effect of follow-up time in weeks
B~N 1(0,0.87 [Effect of follow-up k
Qarm|i] ™~ Normal(0, Uann) ?\-’ariatiun across SOC vs CAMPS arms]
Oarm ~ HalfNormal(11.15) :Priur on variability of arm ('fft‘('.tbi]
Qproduct|i] ™~ Normal(ﬂ, ﬂ'pwi.u-t) :p[’l)(lllt'I—H[J{‘(‘i[i(‘ random off&‘cts]
Oproduct ~ HalfNormal(11.15) :I’riur on variability across prudu{‘l.:-i]

am.“dm.t;m.m|{-| ~ Normal((l, (Tprulurt:arm) :Interaction between I)mdut't and treatment arm

Oproduct:arm ™~ HalfNormal(11.15) :Prior on interaction effect variahility]
+ ~ Normal(0, 1.0) :Global mean for log-precision (4}]
Yproduct:arm|i] ™~ Normal((], O‘,;) j;—'&lluws % to vary by pwduct-arm]
o« ~ HalfNormal(1.0) fPrior on overdispersion variabi]ity]

 Broad priors were applied to the intercept (baseline healing rate) and time effect, allowing for wide variation in
healing rates and modest increases or decreases over time.

« The prior on the time effect was centered at zero to reflect uncertainty about whether longer follow-up improves
outcomes.

- Random effects were modeled with priors on both effect sizes and variances, permitting product-specific variation
but limiting extreme inferences unless strongly supported by data.

« Dispersion priors allowed some arms to show more consistent outcomes than others, an important feature when
synthesizing studies with variable design quality and sample size.

To assess the robustness of the treatment effect to prior assumptions, three Normal prior distributions were specified
on the log scale for both baseline healing and treatment effects. First, a diffuse prior was used to represent minimal
prior information. Second, a skeptical prior was parameterized to correspond to a mean 30% healing probability on
the outcome scale for both the treatment and SOC arms. Third, an informative prior reflecting a mean 30% healing
probability for SOC and mean 50% for the treatment arm was applied. These priors were selected to span a range of
prior beliefs: ignorant, skeptical, and optimistic. Sensitivity analyses indicated that posterior estimates were minimally
affected by prior specification, suggesting that the data and likelihood were sufficiently informative to dominate the
prior distributions.
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Affinity

2-04 1 ;16 = 2!89

‘ 1.79 (1.28 - 2.34)

1.74 (1.13 - 2.41)

Derma-Gide . 1.94 (1.38 - 2.61)

Dermagraft : 2.3(1.19 - 3.44
| 28 )

o 206(1.04-325)
A 197 (143-265)
2.14 (1.36 - 3.21

& ( )
2.29 (1.36 - 3.52

= ( )

Graftjacket ‘ 1.75 (1.3 - 2.23)

Kerecis Omega3 or Marigen Shield ' 1.96 (1.3 - 2.57)

Q. 185(108-26)

2.06 (0.96 - 3.23)

AmnioBand or AmnioGuardian

Apligraf

p

DermACELL AWM

Epicord

Epifix

FlexHD or AllopathHD

Grafix Stravix Prime PL

NuShield

Qasis Wound Matrix

Omniograft Dermal Regeneration Matrix . 1.91 (1.18 - 2.75)
Primatrix Q. 193(116-272)
Theraskin

p, 198(132-285)

Total ‘ 2.0 (1.69 - 2.38)

FAVORS SOC += =» FAVORS CAMPS
I T T T

f T T 1
-2-1 0 1 2 3 4 5

FIGURE 3 | Product-level posterior distributions of risk ratios, depicted as shaded density curves. Wider intervals corre-
spond to fewer contributing trial arms or greater variability across study results, whereas narrower intervals reflect more
consistent performance across multiple trials.

Standardization and estimation of effects

Healing probabilities were estimated for each treatment arm of each product by sampling from the posterior predictive
distribution of the hierarchical beta-binomial model. To facilitate cross-study comparison, we standardized all
predictions to a 12-week follow-up and a hypothetical sample size of 100 patients (50 per arm). This standardization
reflects the most common LCD trial duration and provides an interpretable benchmark scale for comparing healing
rates across heterogeneous studies.

Product-specific risk ratios were then calculated as the ratio of healing probability in the CAMPs (treatment) arm to
that in the SOC arm. These estimates reflect marginal effects derived from the posterior, incorporating both within- and
between-study uncertainty. A pooled risk ratio summarizing the overall treatment effect was also calculated from the
population-level posterior.

Posterior predictions were additionally used to simulate outcomes for trials lacking SOC comparators (e.g., single-arm
CAMPs studies), allowing inclusion of all LCD-cited trials without naive imputation or exclusion.
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Results

Across all 35 LCD-cited RCTs, the pooled posterior mean risk ratio for CAMPs versus SOC was 2.00 (95% Crl: 1.69-
2.28). This indicates that, on average, wounds treated with a CAMPs product were approximately twice as likely to
achieve complete closure as those treated with SOC alone.

All 17 products included in the analysis demonstrated improved healing rates relative to SOC. Product-specific
posterior distributions showed minimal overlap with a risk ratio of 1.0, providing consistent evidence in favor of CAMPs
treatment across all products evaluated.

At the individual product level, estimated posterior mean risk ratios ranged from 1.74 to 2.30. For every product,
the posterior probability mass near the null effect (risk ratio = 1.0) was negligible, supporting a consistent direction
of effect, though the magnitude varies modestly across products. While a few products showed small tails of their
posterior distributions extending near 1.0, the probability of no effect was less than 3% in every case.

Figure 3 presents product-level posterior distributions of risk ratios, depicted as shaded density curves. Wider intervals
correspond to fewer contributing trial arms or greater variability across study results, whereas narrower intervals
reflect more consistent performance across multiple trials.

Taken together, these findings support a robust and reproducible treatment benefit for CAMPs across a diverse range
of study designs, comparators, and patient populations. The standardized predictions (12-week follow-up, 100
patients per trial) facilitate direct comparisons across heterogeneous RCTs and reinforce the conclusion that CAMPs
substantially improve healing relative to SOC.

Discussion

This Bayesian meta-analysis synthesizes wound healing outcomes from the 35 RCTs cited in the 2024 Medicare
LCDs for CAMPs products. Using a hierarchical beta-binomial model, we estimated both product-specific and pooled
treatment effects relative to SOC. Our findings indicate that CAMPs consistently improve wound closure rates when
compared with SOC alone.

The pooled posterior mean risk ratio for CAMPs versus SOC was 2.00 (95% Crl: 1.69-2.38), indicating that wounds
treated with CAMPs were approximately twice as likely to heal as those receiving SOC. Product-specific analyses
supported this conclusion, with all 17 products demonstrating superior healing relative to SOC. Posterior probability
mass near the null effect was negligible in every case, suggesting high certainty in the direction of benefit.

These results were derived from standardized posterior predictions simulating a typical trial scenario: 12 weeks

of follow-up and 100 randomized patients (50 per arm). Standardization allowed direct comparisons across
heterogeneous trial designs and ensured fair interpretation of treatment effects. By modeling outcomes at the arm
level, we incorporated both within- and between-study uncertainty, leveraged partial pooling across studies, and
generated plausible SOC comparators for single-arm trials.

The hierarchical beta-binomial framework was particularly well-suited for this evidence base. It accommodates
variability in baseline healing rates, adjusts for overdispersion, and shrinks extreme estimates toward the global mean
while preserving product-specific effects. Importantly, Bayesian inference allowed us to present results as posterior
probabilities rather than relying solely on confidence intervals, providing a more intuitive interpretation of uncertainty
for clinicians and policymakers.

This analysis complements, rather than replaces, the GRADE assessments used in the LCD process. While GRADE
provides a structured, qualitative appraisal of risk of bias and strength of evidence, our meta-analysis delivers a formal
quantitative estimate of effect size and its uncertainty. Together, these approaches provide a transparent and policy-
relevant interpretation of the evidence underpinning Medicare's 2024 coverage decisions.

Limitations

As with any meta-analysis, our conclusions are constrained by the quality of the studies included. Although the
hierarchical model accounts for heterogeneity and missing comparators, residual confounding or publication bias—
particularly given the prevalence of industry-sponsored CAMPS trials—may still influence results. Standardizing
predictions to a 12-week follow-up improves comparability but does not capture longer-term trajectories or variability
in real-world SOC practices. Furthermore, the model assumes exchangeability of trials once design and product
factors are incorporated; unmeasured differences in patient populations or clinical practice may nonetheless affect
healing outcomes.
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Conclusion

For clinicians, this analysis provides robust product-specific estimates of expected healing outcomes under typical trial
conditions. For sponsors, the results clarify the treatment effects associated with currently covered CAMPs products
and offer practical benchmarks for trial design and positioning. For regulators and payers, the findings present a
reproducible and transparent quantification of treatment benefit, derived from the same evidence base that informed
Medicare’s 2024 LCDs. By anchoring interpretation to the LCD-cited RCTs, this analysis strengthens confidence in the
policy foundation and provides a framework for evaluating future CAMPs interventions.
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