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Introduction
Diabetic foot ulcers (DFUs) are a common and serious complication of diabetes, affecting up to one in four people with 
the disease during their lifetime. They are associated with prolonged morbidity, high rates of infection and amputation, 

Abstract
Aims: To quantify the treatment effects of cellular, acellular and matrix-like products (CAMPs) on diabetic foot ulcer (DFU) 
healing, based on the 35 randomized controlled trials (RCTs) cited in Medicare’s 2024 Local Coverage Determinations 
(LCDs).
Methods: We extracted healing outcome data from all 35 RCTs and applied a Bayesian hierarchical beta-binomial model 
to estimate product-specific and pooled healing probabilities, and risk ratios. We used posterior prediction to account for 
heterogeneity and to impute missing standard of care (SOC) comparators. Predicted outcomes were standardized to a 12-
week follow-up and a hypothetical trial size of 100 participants (50 per arm), ensuring comparability across heterogeneous 
study designs.
Results: All CAMPs showed improved healing relative to SOC. The pooled posterior mean risk ratio was 2.0 (95% credible 
interval (Crl)): 1.69–2.38), indicating a doubling of healing likelihood. Product-specific risk ratios ranged from 1.74 to 2.30, 
with minimal posterior probability near the null, supporting consistent treatment benefit across products.
Conclusions: CAMPs consistently show superior healing outcomes compared to SOC in promoting DFU healing. This 
quantitative synthesis clarifies the evidence underpinning Medicare’s coverage decisions and provides a statistical 
benchmark for clinicians, sponsors, and payers in evaluating CAMPs-based therapies.
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and substantial health care costs. Standard of care (SOC) typically includes debridement, infection control, pressure 
offloading, and regular wound dressings, but many DFUs fail to heal under these measures alone. Cellular and/or 
tissue-based products (CAMPs) have emerged as adjunctive therapies designed to promote healing by providing 
structural scaffolds, growth factors, and regenerative cellular components. Although widely adopted in clinical 
practice, CAMPs are costly, and their coverage has become a focal point of payer policy. 

In May 2023, all seven Medicare Administrative Contractors (MACs) jointly released proposed Local Coverage 
Determinations (LCDs)1 that substantially limited coverage for CAMPs used in the treatment of DFUs. Although issued 
under separate MAC jurisdictions, the LCDs were co-ordinated in scope, design, and evidentiary foundation. Each 
relied on a harmonized application of the Grading of Recommendations Assessment, Development and Evaluation 
(GRADE)2 framework to assess the strength of clinical evidence. After reviewing public comments, the MACs finalized 
the LCDs on January 4, 2024,3-8 establishing a unified national policy that restricted reimbursement to 17 specific 
CAMPs products based on 35 cited randomized controlled trials (RCTs). 

While the LCDs provided a structured appraisal of evidence strength, the GRADE framework does not quantify effect 
sizes or account for statistical heterogeneity across trials. In particular, it leaves unanswered questions about the 
magnitude and consistency of CAMPs' clinical benefit. The primary endpoint across all LCD-cited studies was 
complete wound closure, a clinically meaningful outcome that reflects full re-epithelialization, reduced infection risk, 
and lower likelihood of amputation. The LCDs synthesized this evidence using the GRADE framework to evaluate risk of 
bias, consistency, precision, and overall strength of recommendation. Yet differences in trial design, SOC definitions, 
and product characteristics complicate direct comparisons and reduce interpretability. 

A rigorous quantitative synthesis is therefore needed to complement the GRADE assessments. Conventional 
fixed-effects or frequentist meta-analyses are ill-suited to this evidence base given its heterogeneity and missing 
comparators. By contrast, a Bayesian hierarchical beta-binomial model allows for partial pooling across studies, 
accommodates overdispersion in healing outcomes, and can generate probabilistic predictions for trials lacking SOC 
arms.9 This approach to the meta-analysis of binary outcomes was discussed at length by Zhang,10 and performed 
inter alia by Spiegelhalter.11 This approach provides both product-specific and pooled effect estimates while directly 
quantifying uncertainty.

In this study, we conducted a Bayesian meta-analysis of the 35 RCTs cited in the 2024 Medicare LCDs. Our 
objective was not to re-evaluate the full CAMPs literature, but to quantify the evidence already deemed sufficient for 
policymaking. By doing so, we provide a transparent statistical interpretation of the LCDs and establish benchmarks for 
clinicians, sponsors and payers in evaluating CAMPs-based therapies.

Methods
Study identification
We identified studies based on the list of RCTs (depicted in Figure 1) published by all seven MACs. These LCDs listed 
35 RCTs supporting coverage for 17 specific CAMPs products. Each LCD referenced the same harmonized set of 
studies, derived from a co-ordinated GRADE assessment process. 

No additional database search (e.g., MEDLINE, Embase) was performed beyond this pre-specified source. This 
decision reflects our objective: to formally quantify the evidence base used by the MACs in determining coverage. To 
ensure accuracy and completeness, we extracted publication identifiers (PMIDs, DOIs), journal names, study arms, 
and outcome data directly from the LCDs and cross-referenced them with the original publications accessed via 
PubMed and publisher websites.

This focused search strategy supports the analytic goal of replicating the evidentiary foundation already judged sufficient 
for Medicare coverage, rather than re-assessing the broader body of CAMPs literature. By restricting inclusion to LCD-
cited trials, we avoided selection bias and maintained alignment with the policy-relevant evidence base. 

Classification of trials, outcomes, and definitions
As shown in Figure 2, trials were classified based on design characteristics reported in the LCD source document, 
original trial publications, and supplementary materials when available. Most studies were two-arm RCTs comparing 
CAMPs to SOC over a 12-week follow-up. The sample also included single-arm CAMPs studies, three-arm trials, and 
trials with longer durations (e.g., 16 or 20 weeks).

The primary outcome across all studies was complete wound closure, typically defined as 100% re-epithelialization 
with no drainage at the index wound site. While wound assessment protocols varied, the healing definition was 
standardized and consistently extracted from the LCDs. When multiple endpoints or time points were reported, we 
selected the final follow-up window listed in the LCDs.
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FIGURE 1 | List of 35 RCTs supporting coverage for 17 specific 
CAMPs products published by all seven MACs.
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Each study arm was classified by treatment type (CAMPs or SOC) and by product. Outcomes were recorded as the 
number of healed wounds out of the number treated. This enabled arm-level modeling and partial pooling across 
studies while accounting for variability in product, comparator, and trial design.
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This classification ensured fidelity to the policy-relevant evidence base and supported hierarchical modeling of 
binomial outcomes across a diverse set of trial designs.

Statistical methods
Model structure
The authors modeled wound healing outcomes using a Bayesian hierarchical beta-binomial regression. The unit of 
analysis was the study arm, with each arm contributing the number of wounds healed out of the total treated. To 
account for greater-than-binomial variation (i.e., heterogeneity across patients, protocols, or measurements), a beta-
binomial likelihood was used.

In this model, μ_i represents the average healing probability in arm (i), and κ_i captures how tightly individual outcomes 
cluster around the average. A higher κ implies more consistency; a lower κ allows for greater within-arm variation.

Healing probability was modeled on the logit scale. The model included an overall intercept (α) representing baseline 
healing across arms, a fixed effect of follow-up time in weeks (β∙weeki), and random effects to account for differences 

FIGURE 2 | Trials were classified based on design characteristics reported in the LCD source 
document, original trial publications, and supplementary materials when available.
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by treatment arm (CAMPs versus SOC), by product, and by product-treatment combinations.

This structure accounts for differences in product performance and allows these effects to vary between CAMPs and 
SOC arms. The use of random effects enables uncertainty in product-specific performance while leveraging shared 
information across studies (‘partial pooling’).

We also allowed variability (κi) within each arm to differ by product and treatment type, reflecting the fact that some 
studies reported more consistent healing outcomes than others. This ensures that results from arms with wide 
variability are appropriately down weighted in the final estimates. 

By using a hierarchical model, we accommodate between-trial variation, estimate plausible outcomes for missing 
comparators, such as SOC arms in single-arm trials, and strengthen inference by borrowing information across related 
study conditions. 

Estimand and effect measures
The estimand was defined in log-odds space and transformed to healing probability using the expit (inverse logit) 
function. Risk ratios were calculated by dividing the predicted probability of complete wound closure in the CAMPs arm 
by the predicted probability in the SOC arm.

Priors
In Bayesian analysis, priors reflect initial assumptions about model parameters.12 They help stabilize estimates when 
data are sparse or heterogenous. We used weakly informative priors to define plausible ranges for healing rates and 
between-study variation, without overpowering the observed data.

•	 Broad priors were applied to the intercept (baseline healing rate) and time effect, allowing for wide variation in 
healing rates and modest increases or decreases over time.

•	 The prior on the time effect was centered at zero to reflect uncertainty about whether longer follow-up improves 
outcomes.

•	 Random effects were modeled with priors on both effect sizes and variances, permitting product-specific variation 
but limiting extreme inferences unless strongly supported by data.

•	 Dispersion priors allowed some arms to show more consistent outcomes than others, an important feature when 
synthesizing studies with variable design quality and sample size.

To assess the robustness of the treatment effect to prior assumptions, three Normal prior distributions were specified 
on the log scale for both baseline healing and treatment effects. First, a diffuse prior was used to represent minimal 
prior information. Second, a skeptical prior was parameterized to correspond to a mean 30% healing probability on 
the outcome scale for both the treatment and SOC arms. Third, an informative prior reflecting a mean 30% healing 
probability for SOC and mean 50% for the treatment arm was applied. These priors were selected to span a range of 
prior beliefs: ignorant, skeptical, and optimistic. Sensitivity analyses indicated that posterior estimates were minimally 
affected by prior specification, suggesting that the data and likelihood were sufficiently informative to dominate the 
prior distributions.
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Standardization and estimation of effects
Healing probabilities were estimated for each treatment arm of each product by sampling from the posterior predictive 
distribution of the hierarchical beta-binomial model. To facilitate cross-study comparison, we standardized all 
predictions to a 12-week follow-up and a hypothetical sample size of 100 patients (50 per arm). This standardization 
reflects the most common LCD trial duration and provides an interpretable benchmark scale for comparing healing 
rates across heterogeneous studies. 

Product-specific risk ratios were then calculated as the ratio of healing probability in the CAMPs (treatment) arm to 
that in the SOC arm. These estimates reflect marginal effects derived from the posterior, incorporating both within- and 
between-study uncertainty. A pooled risk ratio summarizing the overall treatment effect was also calculated from the 
population-level posterior.

Posterior predictions were additionally used to simulate outcomes for trials lacking SOC comparators (e.g., single-arm 
CAMPs studies), allowing inclusion of all LCD-cited trials without naïve imputation or exclusion.
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FIGURE 3 | Product-level posterior distributions of risk ratios, depicted as shaded density curves. Wider intervals corre-
spond to fewer contributing trial arms or greater variability across study results, whereas narrower intervals reflect more 

consistent performance across multiple trials.
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Results
Across all 35 LCD-cited RCTs, the pooled posterior mean risk ratio for CAMPs versus SOC was 2.00 (95% CrI: 1.69–
2.28). This indicates that, on average, wounds treated with a CAMPs product were approximately twice as likely to 
achieve complete closure as those treated with SOC alone.

All 17 products included in the analysis demonstrated improved healing rates relative to SOC. Product-specific 
posterior distributions showed minimal overlap with a risk ratio of 1.0, providing consistent evidence in favor of CAMPs 
treatment across all products evaluated.

At the individual product level, estimated posterior mean risk ratios ranged from 1.74 to 2.30. For every product, 
the posterior probability mass near the null effect (risk ratio = 1.0) was negligible, supporting a consistent direction 
of effect, though the magnitude varies modestly across products. While a few products showed small tails of their 
posterior distributions extending near 1.0, the probability of no effect was less than 3% in every case.

Figure 3 presents product-level posterior distributions of risk ratios, depicted as shaded density curves. Wider intervals 
correspond to fewer contributing trial arms or greater variability across study results, whereas narrower intervals 
reflect more consistent performance across multiple trials.

Taken together, these findings support a robust and reproducible treatment benefit for CAMPs across a diverse range 
of study designs, comparators, and patient populations. The standardized predictions (12-week follow-up, 100 
patients per trial) facilitate direct comparisons across heterogeneous RCTs and reinforce the conclusion that CAMPs 
substantially improve healing relative to SOC.

Discussion
This Bayesian meta-analysis synthesizes wound healing outcomes from the 35 RCTs cited in the 2024 Medicare 
LCDs for CAMPs products. Using a hierarchical beta-binomial model, we estimated both product-specific and pooled 
treatment effects relative to SOC. Our findings indicate that CAMPs consistently improve wound closure rates when 
compared with SOC alone.

The pooled posterior mean risk ratio for CAMPs versus SOC was 2.00 (95% CrI: 1.69–2.38), indicating that wounds 
treated with CAMPs were approximately twice as likely to heal as those receiving SOC. Product-specific analyses 
supported this conclusion, with all 17 products demonstrating superior healing relative to SOC. Posterior probability 
mass near the null effect was negligible in every case, suggesting high certainty in the direction of benefit.
These results were derived from standardized posterior predictions simulating a typical trial scenario: 12 weeks 
of follow-up and 100 randomized patients (50 per arm). Standardization allowed direct comparisons across 
heterogeneous trial designs and ensured fair interpretation of treatment effects. By modeling outcomes at the arm 
level, we incorporated both within- and between-study uncertainty, leveraged partial pooling across studies, and 
generated plausible SOC comparators for single-arm trials.

The hierarchical beta-binomial framework was particularly well-suited for this evidence base. It accommodates 
variability in baseline healing rates, adjusts for overdispersion, and shrinks extreme estimates toward the global mean 
while preserving product-specific effects. Importantly, Bayesian inference allowed us to present results as posterior 
probabilities rather than relying solely on confidence intervals, providing a more intuitive interpretation of uncertainty 
for clinicians and policymakers.

This analysis complements, rather than replaces, the GRADE assessments used in the LCD process. While GRADE 
provides a structured, qualitative appraisal of risk of bias and strength of evidence, our meta-analysis delivers a formal 
quantitative estimate of effect size and its uncertainty. Together, these approaches provide a transparent and policy-
relevant interpretation of the evidence underpinning Medicare's 2024 coverage decisions. 

Limitations
As with any meta-analysis, our conclusions are constrained by the quality of the studies included. Although the 
hierarchical model accounts for heterogeneity and missing comparators, residual confounding or publication bias—
particularly given the prevalence of industry-sponsored CAMPS trials—may still influence results. Standardizing 
predictions to a 12-week follow-up improves comparability but does not capture longer-term trajectories or variability 
in real-world SOC practices. Furthermore, the model assumes exchangeability of trials once design and product 
factors are incorporated; unmeasured differences in patient populations or clinical practice may nonetheless affect 
healing outcomes. 
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Conclusion
For clinicians, this analysis provides robust product-specific estimates of expected healing outcomes under typical trial 
conditions. For sponsors, the results clarify the treatment effects associated with currently covered CAMPs products 
and offer practical benchmarks for trial design and positioning. For regulators and payers, the findings present a 
reproducible and transparent quantification of treatment benefit, derived from the same evidence base that informed 
Medicare’s 2024 LCDs. By anchoring interpretation to the LCD-cited RCTs, this analysis strengthens confidence in the 
policy foundation and provides a framework for evaluating future CAMPs interventions. 

Acknowledgments
The authors wish to thank Dr. Sasha Frade for her collegial input, editorial refinement, and constructive 
recommendations that strengthened the clarity and presentation of this manuscript

Conflicts of interest
All authors are members of Open Wound Research, a data science company that provides research and analytic 
services to multiple stakeholders across the wound care industry. Some of these stakeholders, including CAMPS 
producers and distributors, may have previously engaged, currently engage, or may in the future engage with Open 
Wound Research. 

The study was funded by Open Wound Research. The study ideation, design, data collection, analysis, interpretation 
of findings, and preparation of the manuscript were conducted independently by the authors, and all conclusions 
represent their professional judgment.

Support for Open Access was received from Biostem Technologies. 

The authors are solely responsible for the content of this manuscript and for the decision to submit it for publication.

Data availability statement
All data and code will be made available on the open Github repository (https://github.com/OpenWoundResearch/IJTR_
Bayesian_LCD_Meta-Analysis-202510) on 11/3/25.

Author contributions
Zwelithini Tunyiswa - Conceptualization, modeling, manuscript writing; Robert Frykberg - Conceptualization, modeling, 
manuscript writing; Ryan Dirks - Clinical interpretation. 

References
1.	 Novitas Solutions, Inc. Proposed Local Coverage Determination (LCD): Skin Substitute Grafts/Cellular and Tissue-

Based Products for Treatment of Diabetic Foot Ulcers and Venous Leg Ulcers (DL35041). Centers for Medicare 
& Medicaid Services; 2023. https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=35041 
(accessed 27 October 2025)

2.	 Guyatt G, Agoritsas T, Brignardello-Petersen R, et al. Core GRADE 1: overview of the Core GRADE approach. BMJ. 
2025;389:e081903. https://doi.org/10.1136/bmj-2024-081903 

3.	 Novitas Solutions, Inc. Local Coverage Determination (LCD): Skin Substitute Grafts/Cellular and Tissue-Based 
Products for Treatment of Diabetic Foot Ulcers and Venous Leg Ulcers (L35041). Centers for Medicare & Medicaid 
Services; 2024. https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=35041 (accessed 27 
October 2025)

4.	 Noridian Healthcare Solutions, LLC. Local Coverage Determination (LCD): Skin Substitute Grafts/Cellular 
and Tissue-Based Products for Treatment of Diabetic Foot Ulcers and Venous Leg Ulcers (L39764). Centers 
for Medicare & Medicaid Services; 2024. https://www.cms.gov/medicare-coverage-database/view/lcd.
aspx?lcdid=39764 (accessed 28 October 2025)

5.	 First Coast Service Options, Inc. Local Coverage Determination (LCD): Skin Substitute Grafts/Cellular and Tissue-
Based Products for Treatment of Diabetic Foot Ulcers and Venous Leg Ulcers (L36377). Centers for Medicare & 
Medicaid Services; 2024. https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcdid=36377&ver=7& 
(accessed 28 October 2025)

6.	 National Government Services, Inc. Local Coverage Determination (LCD): Skin Substitute Grafts/Cellular 
and Tissue-Based Products for Treatment of Diabetic Foot Ulcers and Venous Leg Ulcers (L39828). Centers 
for Medicare & Medicaid Services; 2024. https://www.cms.gov/medicare-coverage-database/view/lcd.
aspx?lcdId=39828&ver=6 (accessed 28 October 2025)

7.	 Wisconsin Physicians Service Insurance Corporation. Local Coverage Determination (LCD): Skin Substitute Grafts/
Cellular and Tissue-Based Products for Treatment of Diabetic Foot Ulcers and Venous Leg Ulcers (L39865). 
Centers for Medicare & Medicaid Services; 2024. https://www.cms.gov/medicare-coverage-database/view/lcd.
aspx?lcdid=39865&ver=4 (accessed 28 October 2025)

8.	 CGS Administrators, LLC. Local Coverage Determination (LCD): Skin Substitute Grafts/Cellular and Tissue-Based 



9International Journal of Tissue Repair  2025 https://doi.org/10.63676/s3d77a30

Products for Treatment of Diabetic Foot Ulcers and Venous Leg Ulcers (L39756). Centers for Medicare & Medicaid 
Services; 2024. https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcdid=39756&ver=7 (accessed 
28 October 2025)

9.	 Spencer FA, Iorio A, You J, et al. Uncertainty and clinical decision making: a framework for evidence translation. 
Stat Methods Med Res. 2018; 27(12):3986–95. https://doi.org/10.1177/0962280218754928 

10.	 Zhang J, Ko CW, Nie L, Chen Y, Tiwari R. Bayesian hierarchical methods for meta-analysis combining 
randomized-controlled and single-arm studies. Stat Methods Med Res. 2019;28(5):1293-1310. https://doi.
org/10.1177/0962280218754928

11.	 Higgins JP, Spiegelhalter DJ. Being sceptical about meta-analyses: a Bayesian perspective on magnesium trials in 
myocardial infarction. Int J Epidemiol. 2002;31(1):96-104. https://doi.org/10.1093/ije/31.1.96

12.	 van de Schoot R, Depaoli S, King R, et al. Bayesian statistics and modelling. Nat Rev Methods Primers. 
2021;1(1):1–26. https://doi.org/10.1038/s43586-020-00001-2 


