

■ ABSTRACT

Evaluation of single layer amniotic membrane in the management of nonhealing diabetic foot ulcers: an interim analysis of CAMPX

Thomas E Serena,¹ MD | Brianna Tramelli¹ | Emily King¹ MS | Dereck Shi¹ MS | Gregory Bohn,¹ MD | Ryan Breisinger¹

¹SerenaGroup Inc., Cambridge, MA, USA

Correspondence: Thomas E Serena (tserena@serenagroups.com)

Received: 28 October 2025 | Accepted: 30 October 2025

Funding: The CAMPX trial was conducted under a grant from Applied Biologics.

Keywords: Cellular, acellular and matrix-like products | diabetic foot ulcer | interim analysis | chronic wounds | tissue

regeneration | clinical trial design

Abstract

Background: Diabetic foot ulcers (DFUs) represent a chronic and debilitating complication of diabetes, contributing substantially to patient morbidity, mortality, and economic burden. Despite advances in clinical management, outcomes with the current standard of care (SOC) remain suboptimal, with many ulcers failing to achieve complete closure. These limitations reinforce the need for innovative, cost-effective solutions that promote wound closure.

Methods: This randomized controlled multicenter clinical trial evaluated the efficacy of single layer amniotic membrane (SLAM) plus SOC versus SOC alone in achieving complete closure of nonhealing DFUs over 12 weeks. The primary endpoint was complete wound closure, defined as 100% re-epithelialization without drainage for two consecutive weeks, confirmed by blinded independent review.

Results: In Intent-To-Treat (ITT), the SLAM + SOC arm achieved a 13.1% closure rate versus 8.8% with SOC alone, with findings consistent in the Per-Protocol (PP) population. Additionally, the percent area reduction (PAR) from TV-1 to TV-13 measured weekly with digital photographic planimetry and physical examination were analyzed. For ITT, SLAM + SOC outperformed SOC on both average and median wound-area reduction.

Conclusion: The interim analysis demonstrated that wounds managed with SLAM products trended toward superiority over those managed with SOC.

Author contributions: Conceptualization, TS; methodology, TS, BT, EK, and DS; data curation, DS; writing—original draft preparation, TS, BT EK and DS; writing—review and editing, TS, BT, EK and DS; visualization, TS and GB; project administration, RB. All authors have read and agreed to the published version of the manuscript.

Conflict of interests: The authors declare no conflicts of interest.

This is an open access article under the terms of the Creative Commons BY-NC-ND license, which enables reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

© 2025 The Author(s). International Journal of Tissue Repair