

ABSTRACT

Evaluation of intact fish skin grafts plus standard care in the treatment of venous leg ulcers: an interim analysis of the THOR trial

Thomas E Serena,¹ MD | Brianna Tramelli¹ | Barkley Booker¹ | Emily King,¹ MS | Dereck Shi,¹ MS | John C. Lantis² MD

¹SerenaGroup Inc., Cambridge, MA, USA | ²Mount Sinai West Hospital, New York, NY, USA

Correspondence: Thomas E Serena (tserena@serenagroups.com)

Received: 27 October 2025 | Accepted: 30 October 2025

Funding: The THOR trial was conducted under a grant from Kerecis Limited.

Keywords: Cellular, acellular and matrix-like products | venous leg ulcer | interim analysis | chronic wounds |

clinical trial design

Abstract

Background: Venous leg ulcers (VLUs) are nonhealing wounds that pose considerable clinical and economic challenges. Healing outcomes with existing standard-of-care (SOC) remain limited, creating a pressing need for more effective therapeutic options

Methods: An interim analysis of this randomized controlled multicenter clinical trial evaluated intact fish skin graft (IFSG) and SOC versus SOC alone in nonhealing VLUs. The primary end-point was the percentage of target ulcers achieving complete wound closure in 12 weeks, defined as 100% re-epithelialization without drainage for two consecutive weeks, confirmed by blinded independent review.

Results: The statistical analysis revealed that the treatment arm trended toward improved full wound closure at 12 weeks over SOC by 1.52 (credible interval: 1.37–2.22) in terms of relative risk (Treatment/SOC). This translates to an improvement of 8.53% (credible interval: 5.60%-19.7%) in percentage terms. In the ITT population, the IFSG + SOC arm achieved a 47.6% closure rate versus 21.7% with SOC alone, a 25.9% absolute gain that was not statistically significant (n = 21, 95% CI -0.02% to 0.493%, p = 0.07, α = 0.05). In the ITT and PP population, IFSG + SOC achieved a higher mean area reduction than SOC.

Conclusion: The interim analysis demonstrated a positive trend favoring IFSG products over SOC alone. While the present interim analysis provides promising early results, limitations inherent to its preliminary nature warrant consideration. The alignment of these interim findings with the broader body of evidence reinforces biological plausibility and strengthens confidence that the final analysis will yield clinically meaningful results supported by high-quality evidence.

Author contributions: Conceptualization, T.S.; methodology, T.S., B.T., E.K. and D.S.; data curation, D.S.; writ-ing—original draft preparation, T.S., B.T., E.K. and D.S.; writing—review and editing, T.S., B.T. E.K. and D.S.; visualization, J.C.L.; project administration, B.B. All authors have read and agreed to the published version of the manuscript.

This is an open access article under the terms of the Creative Commons BY-NC-ND license, which enables reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

© 2025 The Author(s). International Journal of Tissue Repair

Informed consent statement: Informed consent was obtained from all subjects involved in the study.

Data availability statement: The data is proprietary but is available on request to the corresponding author.

Conflicts of interest: The authors declare no conflicts of interest. The funders of the THOR study had no role in the de-sign of the study; in the writing of this manuscript, or in the decision to publish the results.

This is an open access article under the terms of the Creative Commons BY-NC-ND license, which enables reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.