

ABSTRACT

A systematic review with semi-quantitative synthesis and GRADE qualification of the effectiveness of a keratin-based matrix in treating hard-to-heal wounds

William Tettelbach¹ MD, FACP, FIDSA, FUHM, MAPWCA | Martha Kelso² RN, CHWS, DAPWCA, HBOT | Louis Cappa³ DPM | Mervin Low⁴ MD, MAPWCA

¹Chief Medical Officer, RestorixHealth, Metairie, LA, US; President, American Professional Wound Care Association (APWCA), Milwaukee, WI, US; President, Wound and Hyperbaric Association (WHA); Adjunct Assistant Professor of Undersea & Hyperbaric Medicine, Duke University School of Medicine, Durham, NC, US; Adjunct Professor of Podiatric Medicine & Surgery, Western University of Health Sciences, Pomona, CA, US | ²Chief Executive Officer, Wound Care Plus, LLC, Kansas City, MO, US | ⁴Medical Director, Montefiore St. Lukes Cornwall Hospital Wound Care Center and Hyperbaric Center; Chief of Podiatric surgery, Montefiore St. Lukes Cornwall Hospital | ⁴Plastic Surgeon CEO, Newport Wound, Newport Beach, CA, US

Correspondence: William Tettelbach (tarpon@xmission.com)
Received: 17 October 2025 | Accepted: 27 October 2025

Funding: No honoraria, consulting fees, or other payments were provided by the companies referenced in this article.

Keywords: Chronic wounds | keratin-based matrix | systematic review

Abstract

Background: Hard-to-heal wounds impose substantial morbidity, cost, and, in the case of diabetic foot ulcers, elevated mortality risk. Venous leg ulcers (VLUs) and variants of epidermolysis bullosa (EB) likewise impose major chronic-disease burden and healthcare cost. Keratin biomaterials derived from wool have demonstrated regenerative potential by stimulating keratinocyte activation and collagen synthesis.

Objective: To systematically assess the clinical efficacy and certainty of evidence for a wool-derived keratin-based matrix (KBM) (Keramatrix [Q4165], Biowound Solutions Inc., Las Vegas, NV, USA), a 510(k) U.S. Food and Drug Administration (FDA) approved product with cleared indications, and related keratin biomaterials in the management of hard-to-heal wounds, using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework.

Methods: Literature from 2006–2025, including a randomized controlled trial (RCT), prospective cohorts, and case-series data, was extracted into a master evidence table. Studies were assessed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) and evaluated across five GRADE domains with appropriate downgrading and upgrading factors. Data were synthesized narratively and semi-quantitatively, with directional summaries of epithelialization and closure outcomes rather than formal meta-analytic pooling due to heterogeneity among studies.

Results: Thirty-two studies (n≈700 human wounds) were identified: one RCT (High certainty), six comparative or cohort studies (Moderate), fifteen case series, and ten case reports or preclinical studies (Low-Very Low). Across seven comparative studies (n≈400 wounds), keratin-based matrix (KBM) treated groups achieved 60–80 % complete or ≥ 50 %

This is an open access article under the terms of the Creative Commons BY-NC-ND license, which enables reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

© 2025 The Author(s). International Journal of Tissue Repair

partial closure by 8–12 weeks versus 25–40 % among controls (approximate RR 1.97; 95 % CI 1.2–3.2). This finding, based on a fixed-effect inverse-variance summary of study-level risk ratios, reflects a semi-quantitative directional effect rather than a formal meta-analysis. Owing to heterogeneity of endpoints, this estimate is reported as a semi-quantitative directional effect rather than a formal meta-analysis. Uncontrolled series reported similar healing rates in treated wounds without formal comparators. No serious adverse events were reported.

Conclusion: Using formal GRADE qualification, the KBM used in these studies demonstrate consistent clinical efficacy and favorable safety across diabetic foot ulcers, venous leg ulcers, and epidermolysis bullosa. Evidence certainty is moderate overall, driven by one high-certainty RCT and multiple concordant cohort studies. The findings support CMS formulary inclusion of Keramatrix as a reasonable and necessary adjunctive therapy following failure of standard of care techniques. Ongoing real-world data continue to corroborate and expand these findings across diverse care settings.

Certainty of Evidence: Overall Moderate.

Acknowledgments: The authors thank the research teams and clinical collaborators whose prior published studies formed the foundation of this systematic review.

Conflicts of interest: The authors declare no conflicts of interest.

Data availability statement: Data supporting the findings of this study are available from the corresponding author upon reasonable request.

Author contributions: WHT conceived and designed the study, oversaw data synthesis, and served as corresponding author. MRK contributed to data acquisition, validation, and clinical interpretation, GRADE assessment, and manuscript editing. LC assisted with methodology development, statistical review, comparative data analysis, GRADE assessment, and manuscript editing. ML contributed to data curation, GRADE assessment, and manuscript editing. All authors reviewed, contributed to, and approved the final manuscript

This is an open access article under the terms of the Creative Commons BY-NC-ND license, which enables reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.